1. Hao Q., Li J.F., Yeap L.S. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation, Sci China Life Sci, 2024 Jul 23, Online ahead of print. [Link]
2. Huang M.E., Qin Y.N., Shang Y.F., Hao Q., Zhan C.Z., Lian C.Y., Luo S.M., Liu L.D., Zhang S.X., Zhang Y., Wo Y., Li N., Wu S.H., Gui T.T., Wang B.B., Luo Y.F., Cai Y.N., Liu X.J.,Xu Z.Y., Dai P.F., Li S.M., Zhang L., Dong J.C., Wang J., Zheng X.Q., Xu Y.J., Sun Y.H., Wu W., Yeap L.S. *, Meng F.L.*. C-to-G editing generates double-strand breaks causing deletion, transversion and translocation, Nat Cell Biol, 2024, 26(2):294-304. [Link]
3. Wang Y.Y., Meng F.L.*,Yeap L.S. *. DNA flexibility can shape the preferential hypermutation of antibody genes, Trends Immunol,2024, 45(3):167-176. [Link]
4. Wang Y.Y., Zhang S.X., Zheng X.Q., Yeap L.S. *, Meng F.L.*. A high-throughput protocol for deamination of long single-stranded DNA and oligo pools containing complex sequences, STAR Protoc, 2023, 4(4):102602. [Link]
5. Wang Y.Y., Zhang S.X., Yang X.R., Hwang J.K., Zhan C.Z., Lian C.Y., Wang C., Gui T.T., Wang B.B., Xie X., Dai P.F., Zhang L., Tian Y., Zhang H.Z., Han C., Cai Y.N., Hao H., Ye X.F., Liu X.J., Liu J.Q., Cao Z.W., Huang S.H., Song J., Pan-Hammarström Q., Zhao Y.F., Alt F.W., Zheng X.Q., Da L.T., Yeap L.S. *, Meng F.L*. Mesoscale dna feature in antibody-coding sequence facilitates somatic hypermutation, Cell, 2023, 186(10): 2193-2207.e19. [Link]
6. Hao Q., Zhan C.Z., Lian C.Y., Luo S.M., Cao W.Y., Wang B.B, Xie X., Ye X.F., Gui T.T., Voena C., Pighi C., Wang Y.Y., Tian Y., Wang X., Dai P.F., Cai Y.N., Liu X.J., Ouyang S.Q., Sun S.Q., Hu Q.W., Liu J., Ye Y.Q., Zhao J.K., Lu A., Wang J.Y., Huang C.X., Su B., Meng F.L., Chiarle R.*, Pan-Hammarström Q.*, Yeap L.S.* . DNA repair mechanisms that promote insertion-deletion events during immunoglobulin gene diversification, Sci Immunol, 2023, 8(81): eade1167. [Link]
7. Gao B., He L.H., Bao Y.J., Chen Y.Y., Lu G.Z., Zhang Y., Xu Y.J., Su B., Xu J.*, Wang Y. *, Yeap L.S.*. Repeated Vaccination of Inactivated SARS-CoV-2 Vaccine Dampens Neutralizing Antibodies Against Omicron Variants in Breakthrough Infection.Cell Res, 2023, 33(3): 258-261. [Link]
8. Lin K., Zhou Y.W., Ai J.W., Wang Y.A., Zhang S.X., Qiu C., Lian C.Y., Gao B., Liu T.T., Wang H.Y., Zhang H.C., Zhang Y., Fu Z.F., Li D., Jiang N., Guo J.X., Wu J., Wang Y.O., Song S.S., Li Q., Yin Y.A., Xia J., Xu Y.J., Yeap L.S., Zheng X.Q., Gu Y., Liu H.Y.*, Zhang W.H.*, Meng F.L.*. B cell receptor signatures associated with strong and poor SARS-CoV-2 vaccine responses. Emerg Microbes Infect, 2022, 11 (1): 452-464. [Link]
9. Feng A.Q, Hao Q* and Yeap L.S.*. Contribution of rare mutational outcomes to broadly neutralizing antibodies. Acta Biochim Biophys Sin (Shanghai), 2022, 54(6): 820-827. [Link]
10. Ye X.F., Ren W.C., Liu D.B., Li X.B., Li W., Wang X.H., Meng F.L., Yeap L.S., Hou Y., Zhu S.D., Casellas, R., Zhang H.L.*, Wu K.*, Pan-Hammarström Q. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J Exp Med, 2021, 218(2): e20200573. [Link]
11. Liu L.D., Lian C.Y., Yeap, L.S.* and Meng F.L.*. The development of neutralizing antibodies against SARS-CoV-2 and their common features. J Mol Cell Biol, 2020, 12(12): 980-986. [Link]
12. Tian Y., Lian C.Y., Chen Y.Y., Wei D., Zhang X.X., Ling Y. *, Wang Y. *, Yeap L.S.*. Sensitivity and specificity of SARS-CoV-2 S1 subunit in COVID-19 serology assays. Cell Discov, 2020, 6: 75. [Link]
13. Liu X.J., Liu TT, Shang Y.F., Dai P.F., Zhang W.B., Lee B.J., Huang M., Yang D.P., Wu Q., Liu L.D., Zheng X.Q., Zhou B.O., Dong J.C., Yeap L.S., Hu J.Z., Xiao T.F., Zha S., Casellas R., Liu X.S.* and Meng F.L.*. ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Res, 2020, 30(9): 732-744. [Link]
14. Yang D.P., Sun Y., Chen J.J., Zhang Y., Fan S.S., Huang M., Xie X., Cai Y.N., Shang Y.F., Gui T.T., Sun L.M., Hu J.Z., Dong J.C., Yeap L.S., Wang X.M., Xiao W. and Meng F.L.*. REV7 is required for processing AID initiated DNA lesions in activated B cells. Nat Commun, 2020, 11(1): 2812. [Link]
15. Yeap, L.S.* and Meng F.L.*. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol, 2019, 141: 51-103. [Link]
16. Liu L.D., Huang M., Dai P., Liu T., Fan S., Cheng X., Zhao Y., Yeap, L.S. and Meng F.L. Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody Ex Vivo Affinity Maturation. Cell Report, 2018, 25: 884-892. [Link]
17. Hwang J.K., Wang C., Du Z., Meyers R.M., Kepler T.B., Neuberg D., Kwong P.D., Mascola J.R., Gordon Joyce M., Bonsignori M., Haynes B.F., Yeap L.S.* and Alt F.W.* . Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. PNAS, 2017, 1-6. [Link]
18. Campagno C., Wang Q., Pighi C., Cheong T.C., Meng F.L., Poggio T., Yeap L.S., Atabay E., Blasco R.B., Langellotto F., Voena C., Kasar S.N., Brown J.R., Sun J., Wu C.J., Gostissa M., Alt F.W and Chiarle R . Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature, 2017, 542(7642): 489-493. [Link]
19. Yeap L.S.#, Hwang J.K.#, Du Z., Meyers R.M., Meng F.L., Jakubauskaite, A., Liu M., Mani V., Neuberg D., Kepler T.B., Wang, J.H. and Alt F.W. Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell, 2015, 163 (5): 1124-37. *co-first authors. Featured in Preview by Cornelis Murre, Cell 163(5):1055-1056. [Link]
20. Hwang J.K.#, Alt F.W. and Yeap L.S.#. Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. Microbiol Spectr, 2015, 3(1):MDNA3-0037-2014. doi:10.1128/microbiolspec.MDNA3-0037-2014. [Link]
21. Yeap L.S., Hayashi K. and Surani M.A. ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin, 2009, 2:12. [Link]
22. Chew J.L, Loh Y.H., Zhang W., Chen X., Tam W.L., Yeap L.S., Li P., Ang Y.S., Lim B., Robson P. and Ng H.H. Reciprocal transcription regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol, 2005, 25: 6031-6046. [Link]