· 个人简介
杨扬,副研究员。长期从事信号处理与人工智能在医疗健康卫生领域的理论方法和应用研究。获得国自然青年基金资助、中国博士后基金、王宽诚研究基金资助、入选上海市海外高层次人才计划、参与国家级和省部级多项课题研究。研究成果发表在NEJM、Lancet Digital Health、Lancet Microbiology 、Briefing in Bioinformatics、Bioinformatics、IEEE Transaction in Signal Processing等国际杂志,累积发表SCI论文20余篇,申请专利2项。为参与世界卫生组织发布的第一份《结核分枝杆菌基因组突变及其与耐药性关联的目录》,参与编写专著《Machine Learning for Healthcare Technologies》。为担任Breifing in Bioinformatics、Journal of Biomedical and Health Informatics、Bioinformatics等杂志审稿人。人才培养方面,2018至2021年担任牛津大学Kellogge学院思政老师;2021年指导牛津大学高等研究院(苏州)电子健康课题组3名成员参加IEEE COVID-19生物信息药物靶向挑战赛并获胜;2020至2021共同指导培养两位研究生申请到牛津大学Clarendon奖学金攻读博士学位
本科与博士均毕业于304am永利集团官网,2013年获工学博士;2007至2008年在美国辛辛那提大学智能维护系统中心交流学习;博士毕业后在304am永利集团官网机械系统和振动国家重点实验室开展博士后工作,后就职于304am永利集团官网机械与动力工程学院;2015至2017年在牛津大学医疗健康计算研究中心担任王宽诚研究员;2018至2021年在牛津大学工程系担任Senior Research Associate,同时负责牛津大学高等研究院(苏州)电子健康课题组;2021年12月加入304am永利集团官网公共卫生学院。
· 研究领域
(1) 测序数据挖掘与表征学习
(2) 医疗健康多模态数据挖掘与融合
(3) 健康卫生数据表征学习与知识发现
(4) 时间序列建模与方法研究
主要发表论文:
1. Yang, Y., Walker, T.M., Walker, A.S., et al, “DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis", Bioinformatics, 35(18), pp. 3240-3249, 2019.
2. Kouchaki, S., Yang, Y.*, Walker, T.M., Walker, S., Wilson, D.J., Peto, T.E.A., Crook, D.W., and Clifton, D.A., “Application of Machine Learning Techniques to Tuberculosis Drug Resistance Analysis”, Bioinformatics, 35(13), pp. 2276–2282, 2019.
3. Yang, Y., Niehaus, K.E., Walker, T.M., et al, “Machine Learning for Classifying Tuberculosis Drug-Resistance from DNA Sequencing Data", Bioinformatics, 34 (10), pp. 1666–1671, 2018.
4. Allix-Beguec, C., ..., Clifton, D.A., Yang, Y., ..., Zhu, B. “Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing”, New England Journal of Medicine 379(15), pp. 1403-1415, 2018. (Co-corresponding author)
5. Samaneh K., Yang, Y., Walker, T.M., Walker, A.S., CRyPTIC Consortium, Peto, T.E.A., Crook, D.W., and Clifton, D.A., “Multi-Label Random Forest Model for Tuberculosis Drug Resistance Classification and Mutation Ranking”, Frontiers in Microbiology, 22 April 2020, https://doi.org/10.3389/fmicb.2020.00667.
6. Yang, Y., Peng, Z., Dong, X., Zhang, W., and Clifton, D.A., “Component Isolation for Multicomponent Signal Analysis Using a Non-parametric Gaussian Latent Feature Model", Mechanical Systems and Signal Processing, 103, pp. 368-380, 2018.
7. Yang, Y., Peng, Z., Zhang, W., Meng G. “Parametric Time-frequency Analysis Methods and their Engineering Applications: A Review of Recent Advances", Mechanical Systems and Signal Processing, 119, pp. 182-221, 2019.
8. Yang, Y., Peng, Z. K., Dong, X. J., Zhang, W. M., Meng, G., “Nonlinear Time-varying Vibration System Identification Using Parametric Time-frequency Transform with Spline Kernel". Nonlinear Dynamics, 85(3), pp. 1679-1694, 2016.
9. Yang, Y., Peng, Z. K., Zhang, W. M., Meng, G., Lang, Z. Q. “Dispersion Analysis for Broadband Guided Wave Using Generalized Warblet Transform", Journal of Sound and Vibration, 367, pp. 22-36,2016.
10. Yang, Y., Dong, X. J., Peng, Z. K., Zhang, W. M., Meng, G., “Vibration Signal Analysis Using Parameterized Time-frequency Method for Feature Extraction of Varying-speed Rotary Machinery", Journal of Sound and Vibration, 332(20), pp. 350-366, 2015.
11. Yang, Y., Dong, X. J., Zhang, W. M., Peng, Z. K., Meng, G., “Component Extraction for Non-Stationary Multi-Component Signal Using Parametrized De-chirping and Band-pass Filter", IEEE Signal Processing Letters, 22(9), pp. 1373-1377, 2015.
12. Yang Y., Peng, Z. K., Dong, X. J., Zhang, W.M., “General Parameterized Time-frequency Transform", IEEE Transactions on Signal Processing, 62(11), pp. 2751-2764, 2014.
13. Yang Y., Peng, Z. K., Dong, X. J., Zhang, W.M., “Application of Parameterized Time-frequency Analysis on Multicomponent Frequency Modulated Signals", IEEE Transactions on Instrumentation and Measurement, 63(12), pp. 3169-3180, 2014.
14. Yang Y., Zhang, W. M., Peng, Z. K., Meng, G., “Multicomponent Signal Analysis based on Polynomial Chirplet Transform", IEEE Transactions on Industrial Electronics, 60(9), pp. 3948-3956, 2013.
15. Yang Y., Peng, Z. K., Zhang, W. M., Meng, G., “Spline-kernelled Chirplet Transform for the Analysis of Signals with Time-varying Frequency and Its Application", IEEE Transactions on Industrial Electronics, 59(3), pp. 1612-1621, 2012.
16. Yang, Y., Peng, Z. K., Zhang W. M., Meng, G., “Frequency-varying Group Delay Estimation Using Frequency Domain Polynomial Chirplet Transform", Mechanical Systems and Signal Processing, 46(1), pp. 146-162, 2014.
17. Yang Y., Peng Z. K., Zhang W. M., Meng G., “Characterize Highly Oscillating Frequency Modulation Using Generalized Warblet Transform", Mechanical Systems and Signal Processing, 26, pp. 128-140, 2012.
18. Zhu, T., Johnson, A.E., Yang, Y., Clifford, G.D. and Clifton, D.A., 2018. Bayesian fusion of physiological measurements using a signal quality extension. Physiological measurement, 39(6), p.065008.
19. Zhu, T., Colopy, G.W., Macewen, C., Niehaus, K., Yang, Y., Pugh, C.W. and Clifton, D.A., 2019. Patient-specific physiological monitoring and prediction using structured Gaussian processes. IEEE Access, 7, pp.58094-58103.
20. Wang C. Y. , Yang Y. *, Kouchaki S., Walker, A.S., Crook, D.W., Peto, T.E.A., Clifton, D.A., “MTB-HINE-BERT: a pre-trained model for predicting drug resistance of Mycobacterium tuberculosis”, Machine Learning for Health workshop at NeurIPS 2020.
21. Yang, Jenny, Andrew AS Soltan, Yang Yang, and David A. Clifton. "Algorithmic Fairness and Bias Mitigation for Clinical Machine Learning: Insights from Rapid COVID-19 Diagnosis by Adversarial Learning." medRxiv (2022). (co-last author)
22. Rohanian, Omid, Samaneh Kouchaki, Andrew Soltan, Jenny Yang, Morteza Rohanian, Yang Yang, and David Clifton. "Privacy-aware Early Detection of COVID-19 through Adversarial Training." arXiv preprint arXiv:2201.03004 (2022).
23. Soltan, Andrew AS, Jenny Yang, Ravi Pattanshetty, Alex Novak, Yang Yang, Omid Rohanian, Sally Beer, Marina A. Soltan et al. "Real-world evaluation of AI driven COVID-19 triage for emergency admissions: External validation & operational assessment of lab-free and high-throughput screening solutions." medRxiv (2021).